On the Fractional Nagumo Equation with Nonlinear Diffusion and Convection

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fixed-point theorem for Caputo–Fabrizio fractional Nagumo equation with nonlinear diffusion and convection

We make use of fractional derivative, recently proposed by Caputo and Fabrizio, to modify the nonlinear Nagumo diffusion and convection equation. The proposed fractional derivative has no singular kernel considered as a filter. We examine the existence of the exact solution of the modified equation using the method of fixed-point theorem. We prove the uniqueness of the exact solution and presen...

متن کامل

Finite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients

In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...

متن کامل

Finite Element Methods for Convection Diffusion Equation

This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...

متن کامل

Continuous Dependence Estimates for Nonlinear Fractional Convection-diffusion Equations

We develop a general framework for finding error estimates for convection-diffusion equations with nonlocal, nonlinear, and possibly degenerate diffusion terms. The equations are nonlocal because they involve fractional diffusion operators that are generators of pure jump Lévy processes (e.g. the fractional Laplacian). As an application, we derive continuous dependence estimates on the nonlinea...

متن کامل

Nonnormality Effects in a Discretised Nonlinear Reaction-Convection-Diffusion Equation

to diffusion, a convection term is present. Our overall aim is to look at the effect of convection on the existence and What is the long-time effect of adding convention to a discretised reaction-diffusion equation? For linear problems, it is well known stability of the true and spurious fixed points. that convection may denormalise the process, and, in particular, The potential denormalising e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Abstract and Applied Analysis

سال: 2014

ISSN: 1085-3375,1687-0409

DOI: 10.1155/2014/963985